AD-A175 253

UNCLASSIFIED

RICROCODE VERIFICHT!OI US!NG SDVS (STRTE DELTA 11
VERIFICATION SYSTEM): THE.. (U) REROSPACE CORP EL

SEGUNDO CA LAB OPERATIONS B H LEVY 30 AUG

TR-0084(4778)-1 SD-TR-86-54 F/G 9/2 NL

-

S Vs Sy

s
2.2
E .

I

28
E=——=1
3.2
=

s

i
i

Of
ol ol

I
™
-3
=
=

[

s

a
EEFEN

(@]
Sl 2 <f)
B |

El —

4 ——
— Ko
L] 20

o RS]
A AN A

%

-
@
=
I
[
-
n
W
-
Z
o
[
2
=
(o3
7
[
@
>
o
o
O
(=)
@x
Q
b3

‘
"
0
o

1
@
o
«
o
o
z
a
by
w
w
S
2
4
w
x
>
a
2
a
z
o
=
a
2z

5

o

PV,

€

o LN

N A

--

REPQORT SD-TR-86-54

Microcode Verification Using SDVS:
The Method and a Case Study

B. H. LEVY
Information Sciences Research Office
Laboratory Operations
The Aerospace Corporation
El Segundo, CA 90245

AD-A175 253

1 October 1986

A BISTAIBUTION UNLMITED DTIC
EL.ECTE
DEC 1 8 1986

E

"% FILE COPY

Prepared for

NATIONAL SECURITY AGENCY
9800 Savage Rd.
Fort George C. Meade, MDD 20755

SPACE DIVISION
. AIR FORCE SYSTEMS COMMAND
- Los Angeles Air Foree Station
P.O. Box 92960, Worldway Postal Center
Los Angeles, CA 90009- 2960

o RN - -.'. - e e . . .
PP PRE AP T W T SR AP LIPS St G Tt .3 W

§‘ KPR L OO R Y %1% 44gt e 324 TR b Gy et g he’ P a8 g%8 " - A ¥4 o3 o7 Vo ata- Vet Ve ieb $e- N, by

-

; THE AEROSPACE CORPORATION

R

o i Tl

DOCUMENT CHANGE NOTICE

To Distribution 9 December 1986

DATE

.l.l.,

SUBJECT TR-0086A(2778)-1 rrom Puyblications

Please change the report number of this document to TR-0084(4778)-1
! (block 6, DD Form 1473). This report and the work described therein
were completed 30 August 1984,

WYNANEA

A

e AN

DOTADM

Oty
ey Ay

LR

AEROSPACE FORM 4518
. . -, T T T T T T Tt - R S T S C AT T R TR U .
f‘f._ vt‘."-f'\ \-: f.\ o, *\(\v‘ —\4‘.\ (Y \"\ RSERT IR .."‘._-.\4‘._ 7 ._".\ NN LR T A T e oo
» .n " ! - »! ! ' b v y v . v . y v * " "

;ﬂzﬁ‘F‘ﬁ‘H‘K!x!r(“nﬁﬂ5ﬁ51‘1\i\f‘11.ﬂﬁ‘*""{rititnfgvgr\"77“\f.w.r,r.ITTJP.fT?TT‘Tf?T?f7fyf77ffffffff?f?f?'?‘Pﬁ?]

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE serEAD INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
SD-TR-86-54 HDAIS SO
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED

MICROCODE VERIFICATION USING SDVS:

THE METHOD AND A CASE STUDY .. pzaW
TR-00) -

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)
= B. H. Levy
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK

AREA & WORK UNIT NUMBER
The Aerospace Corporation

El Segundo, Calif. 90245

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE P
Space Division 1 October 1986 5;)A\u (
Los Angeles Air Force Station 13. NUMBER OF PAGES -

Los Angeles, Calif. 90009-2960 40 g

4. MONITORING AGENCY NAME & ADDRESS(if dilferent from Controlling Office) 1S. SECURITY CL ASS. (of this report)

Unclassified
15a, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If necessary and Identify by block number)

verification correctness proofs

microcode theorem provers

symbolic execution formal machine descriptions v
» ISPS ‘

20. ABSTRACT (Continue on reverse aide If necessary and Identity by block number)

" This report describes SDVS (State Delta Verification System), its applica-
tion to microcode verification, and the verification of a particular example
referred to as the H-machine example. The example illustrates how particu-
lar microcode that interprets a computer instructlion set can be proved
correct and how this proof is accomplished with an existing, automated
verification system. _

.

FORM
OO(FACyMWEl|413 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Cadl e N PO TR TF R

: .
* PREFACE 5
{. BACKGROUND 7
A. A NEED FOR NEW VERIFICATION METHODS 7
' B. CORRECTNESS CRITERION 7
4 C. CORRECTNESS PROOFS 8
R 1. Symbolic Execution 8
’ a. Program States 11
:) b. Comparison of Rules for Symbolic Execution with Rules for Backward Substitution 12
" c. State Delta Specification of ISPS 14
! 2. Symbolic Expression Simplification 17
: 3. Induction 18
> 4, Mapping 19
D. WHY MICROCODE VERIFICATION? 21
- E. MICROCODE VERIFICATION 0
& il. A CASE STUDY 27
, X A. MACHINE DESCRIPTIONS 27
5 B. CORRECTNESS PROOF . 29
- IIl. FUTURE CONCERNS 35
’ REFERENCES 37
:» APPENDICES
- A.ISPS DESCRIPTION OF TARGET MACHINE 39
‘ B. ISPS DESCRIPTION OF HOST MACHINE 41
- C. MICROCODE 45
D. ABSTRACT SPECIFICATION OF TARGET MACHINE 47
5 Accession Fo
) TNTIS GRAXI g
[DTIC TAB
Unannounced O
o Justification ol
c By
X] Distritution/
> Avallability Codes
* " iavail and/ow
' ¥
” Dist Special
o o
; o - 4
Av, ST
o

-
s« a"s"8a » B &

3;\ B U n .‘ _; R . A\ S A .‘ T » KA " .. .,. ‘ A .‘ \ - ® \« i .'_'-l'l f’_’"f‘f'?. f‘ ?_ pod ."_ ,"_ ."]_)‘ ?'. ,".",“ f_ f_'_'_'_\. '\‘}“L_‘.\"F_‘;{'_"

vt

\

& FIGURES

2

v,

A 1: HOARE STYLE PROQF QF REGSWITCH 13
2: SYMBOLIC EXECUTION OF REGSWITCH ‘ 14

. 3: STATE DELTA APPLICATION 15

::j 4: REGSWITCH EXPRESSED AS THREE STATE DELTAS WITH EXPLICIT PROGRAM 16

N COUNTER :

X 5: REGSWITCH EXPRESSED AS ONE STATE DELTA WITH IMPLICIT PROGRAM 16

X COUNTER

" . 6: INCREMENTAL TRANSLATION OF REGSWITCH 16

- 7: SDVS PROOF OF REGSWITCH 17

-:'.; 8: HIERARCHY OF DIGITAL SYSTEMS 2

f-: 9: MICROCODE VERIFICATION USING SDVS 24

" 10: TARGET MACHINE 28
11: TARGET INSTRUCTIONS 29

29 12: HOST MACHINE 30

.r 13: MICROINSTRUCTION FORMAT 31

ﬂ

-2

.

-

>

~

ﬂ

. ‘l' L]
* .. .l .‘

‘-
o Talst

A iy A 4 A S

c'&‘# I.(oA ’

~
-~

LI NS

A ST ST U B e WA B NPT W A AR T T R TA TR AR L ¢

3 PREFACE

<

2

5: This paper describes SDVS (State Delta Verification System), its application to microcode verification. and
3

7 (e \crification of a particular example referred to as the H-machine example The example illustrates how
3 parucular microcode that interprets a computer instruction set can be proved correct and how this proof is
"‘: accomplished with an existing, automated verification system. A shortened version of this paper will appear
;.) in the Proceedings of the 17th Annual Microprogramming Workshop, IEEE Computer Society, New Orleans,

oy October 30-November 2. 1984.

.:‘

). -

T I would like to acknowledge the following people at The Aerospace Corporation who developed the state
; delta theory. implemented SDVS, and were exceedingly responsive to my questions and requests: Eve
) Cohen, Jeff Cook, Steve Crocker, Jaisook Landauer, Leo Marcus, Hilarie Orman, and Bill Overman (no
o longer at The Aerospace Corp.). I would also like to thank Mike Vahey and Ben Cohen from Hughes Aircraft
Co. for suggesting this example and for their encouragement.

5,

)

o

.
:-:

o

::::
P

N~

N

..;’

"

.'_;

.

o

= 5
L2

\‘--

'-"b\' '-'- T 0 S -, . - e e e
= -“ . ny * >.- - .
SRR ‘\‘\"" e I TIPS 5 ST R SRS S SRIPAR ;J.;J...huu et e e .-'.*AR‘-(.A

Fadtd i Y

SECTION |
BACKGROUND

The description of SDVS given in this report is not intended to be complete and is provided as
background material. Other documents describe SDVS in greater detail™®. The report was written with the

assumption that the reader is not familiar with correctness proofs, but is familiar with mathematical logic.

A. A NEED FOR NEW VERIFICATION METHODS

Computer systems are becoming too complex to verify using current methods. Hardware and software
sophistication have been increasing more rapidly than the sophistication of verification methodologies,
creating an ever widening gap between technology and verification capability. As a result, we cannot be
confident that the systems being developed properly implement system specifications. Verification problems

are costly, causing unnecessary expenditures of time, labor, and hardware.

Systems are currently verified using testing and simulation, methods which are not adequate for
VLSI/VHSIC technology and today’s large software projects. With testing or simulation a system is deemed
correct if correct results are produced for some small sample of input. The complexity of today’s systems
makes thorough testing impossible because of the large number of potential inputs and execution paths.

Thus, systems are delivered and put into operation with a strong likelihood of undetected errors.

Excessive costs and risks will continue to be incurred unless new verification methods are developed.
As an alternative to testing our goal is to prove mathematically that an implementation satisfies its
specification (or requirements) for gny input. Both the theory and the tools are being developed to do these
correctness proofs for computer system implementations. The verification system being developed at The

Aerospace Corp. is called SDVS (State Delta Verification System).

B. CORRECTNESS CRITERION

Testing does not require formal specifications of system requirements. This permits requirements and
design documents to be written in English, which can be imprecise and ambiguous. Further. it is generally
umpractical or impossible to test all potential input. Consequently, with testing there is no systematic and

consistent way to show that the tmplementation of a system satisfies the svstem requirements,

To eliminate ambiguity and lack of precision, formal languages are used to describe system
requirements. Formal languages arc a prerequisite for formal mathematical proofs. The correctness criterion

15 a mathematical theorem stated in a formal language. The theorem states that the properties of the system

-

C oo 8 ¢ o ¢

.....

specification are preserved by

the implementation (i.e.. the specification is consistent with the

implementation).

C. CORRECTNESS PROOFS

The correctness proof constitutes a verification of the implementation and is a proof of the correctness
criterion. This proof is usually done with computer assistance because of the detail involved. Mechanical

theorem provers range in performance from trying to discover a proof to checking a proof created manually.

A formal logical language is required for the proof. Programming languages can be used as formal
languages for both system specifications and implementations. For example, the behavior of a computer
system is typically specified in a programming language (e.g., ISPSY). If this programming language can be
executed (or translated into an executable language) the behavior of a computer described this way can be
simulated or a software implementation written in the programming language can be tested. If the properties

of the programming language are formally defined (axiomatized), theorems might be proved about an

implementation or a specification written in the programming language. SDVS is used to perform these

proofs.

Proofs in SDVS involve symbolic execution. expression simplification. and induction. These topics are
discussed in the following sections. Sections on program states, rules for svmbolic execution. and state delta

specification of ISPS explain the formalism necessary for symbolic execution in SDVS.

We have also incorporated a mapping construct into SDVS. Among other things, this allows us to
describe how a computer architecture is implemented by microcode operating on some hardware. A brief

description of mapping is given in the section following the discussion on induction.

1. Symbolic Execution

Symbolic execution combined with expression simplification (theorem provers) permits a greater range
of input evaluation than can be done practically with testing' . Whereas in testing a data value must be

-

. *
supplied for each input variable. input variables are not set to values in symbolic execution.

The following example demonstrates the difference between testing and symbolic execution. The

programming language used in the example and in SDVS is ISPS. ISPS is a high level programming language

Symbolic execution 15 sometimes called the dynamic part of the proof and expression simplification is called the static pant of the
proof

L1
Another way of viewing symbolic execution is that symbols are used to represent program inputs and a machine performs symbolic
operations on symbols

. » . - B ‘. PPN . R N PO T S . -
WP UAT AP R R, W Wi Y P T U O VT I e A 1

Al A A S e e e B S e T A S Saie Sai s 2 e gt et

e

commonly used to describe a computer's architecture. The following ISPS program swaps the contents of two

variables declared as registers (bitstrings):

W T T YV VY Ta s s

REGSWITCH (X<15:0>, Y<15:0>) := 1
BEGIN 2

: ** DECLARATION SECTION ** 3
TEMP<15:0> 4

** SWAPPING FUNCTION ** 5

ENTRY {MAIN} := 6

BEGIN 7

TEMP = X NEXT 8

X =Y NEXT 9

Y = TEMP 10

END 11

END 12

To test or simulate this program. data values are supplied for variables X and Y. For example. if X and
Y are initialized to values 4 and 1, respectively, then after the execution of REGSWITCH the values of X and
Y are 1 and 4. respectively.

On the other hand, there is no initialization in svmbolic execution. After symbolic execution. the new
value of X is set to the old value of Y and the new value of Y is set to the old value of X. This is written as
(#X=.Y & #Y=.X) where a period placed before a variable indicates the value of the variable before
execution and a pound sign (" # ") before a variable indicates the value of the variable after execution. Refer

to the formula (#X=.Y & #Y =.X) as Formula 1 in subsequent discussions.

Formula 1 specifies the behavior of the ISPS procedure REGSWITCH. Such formulas are written in a
first-order language with equality. The logical symbols of the language are & (and), V (or). = (implies),

(not). = (equal), and if-then-else

The nonlogical symbols with a fixed interpretation are taken from four quantifier-free theories:
integers. bitstrings. arrays, and coverings (set partitions). These theories define the data types in ISPS. The

non-logical symbols and their signatures (types) are:

1) integers
predicate symbols signature description
< integer X integer — boolean less than or equal
> integer X integer = boolean greater than or
equal
< integer X integer — boolean less than
> integer X integer — boolean greater than
function svmbols signature description
9

B PR - - . ot -
................ LN
e

s R R . cT T e Lt e
A R S T A e I I I RV S T I S
e Wy U NI IR WAT G PRV, Wiy VIV TRV P TR AT AT RS Y

. .

a ‘|ﬁ ey a hy

ORI
FAP S

A

RACAAS

-

Y00

i

e,

.
o .

‘gl

DN NEAY)
Yo'ttt

LAY i

L)
[y

'_
P

DA

P
[\S

‘BB S

Y

Ul s
. o = & &8 & & aQ}

L
.
.
-

ICONS

constant symbols
w2-1012..

2) bitstrings

function symbols
th
usval
ussub
usconc
useql
usneq
uslss
usleq
usgtr
usgeq

usplus
usdifference
usnot
ustimes
usquotient
usremainder
usnot

usand

usor

usxor

useqv
zeros
ones
lastone

constant symbols
bs(x. v)

integer X integer — integer
integer X integer ~> integer
integer — integer

integer X integer — integer
integer X integer — integer
integer X integer — integer
integer X integer — integer
integer X integer — integer
integer X integer — integer

integer X integer X integer — integer

signature
integer

signature
bitstring — non-negative integer
bitstring — non-negative integer

bitstring X integer X integer —* bitstring

bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring

bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring — bitstring

bitstring X bitstring — bitstring
bitstring X bitstring — bitstring
bitstring X bitstring — bitstring

bitstring X bitstring — bitstring
integer — bitstring

integer — bitstring

bitstring — bitstring

signature
bitstring

where X and y are integer constants

10

a

[N PR [PR

addition
subtraction
arithmetic
negation
multiplication
maximum
minimum
exponentiation
division
remainder
integer construction

description

the integers

description

length

value

substring
concatenation
equality
non-equality

less than

less than or equal
greater than
greater than or
equal

addition
subtraction

logical negation
multiplication
quotient
remainder

logical negation
logical conjunction
logical disjunction
logical exclusive
disjunction
negation of usxor
bitstring of all zeros
bitstring of all ones
bitstring low-order
1 index

description
constant bitstring
of value X and
length Y

L TR Y DAt s S AT an

A e A 0 S A i S A A A AN Ay S SRS A s el s i S o g b SAch i A S S geg o aagte S

1) arrays
function svmbols signature ' description
slice arrav X integer X integer — array select subarray
element array X integer — U select array element
where U € {integers. bitstrings, arrays. coveri~gs}
range array — integer array length
aconc array X array — array array

concatentation

4) coverings (set partitions)
predicate svmbols signature description
covering set™ — boolean set partition
pcovering set™ = boolean partial set partition
alldisjoint set™ — boolean pairwise disjoint
constant symbols signature description
emptyset set the empty set

The axioms for the four theories are not listed in this report, but can be found in the SDVS reference
manual. Theorems about ISPS programs are deduced from the axioms and the rules for symbolic execution

which are explained below.

a. Program States

Formula 1 is called a postcondition. One savs that the result of symbolically executing REGSWITCH is
given by the postcondition or that the postcondition is consistent with the program REGSWITCH. The

postcondition is a component of a state of the ISPS program. The state of the program is defined as:

1) the current value of the program'’s variables (including the postcondition)
2) the value of the program counter

3) the path condition (the set of assumptions previously made)

A boolean expression is added to the path condition whenever a decision is encountered in the program.
Formula 1 describes the current value of the program’s variables when the program counter is 12 (the last
instruction) and the path condition is the formula true (i.c.. there are no branches in the program). There is a
state change after the execution of each ISPS instruction. and thus. the program counter is a component of a

state. Formula 1 specifies values of variables in the final state.

The state changes are specified by defining a rule for symbolic execution for each program statement.

These rules must be sound and agree with the programming language semantics.” For example, in the

L d
These rules are often used as the defimtion of the semantics

. B T e e . e - e e e -

P N R AR) I‘.‘ R T T e N A - - e T R N G
S o A N G AL e R P IIS Tat) LI e T T T T e e e T T T
WA o . R L SN, C ot e et e e e T N T T T
< PRIV AP W AN WP I ERE ST RS NP T S P i R R R P R R PN 07 2 PRI AT R P I

0 4

L g

'3 2

A A

rILS

procedure REGSWITCH there are three assignment statements. whose execution results in three state
changes. The rule for symbolic execution of the assignment statement is used below to demonstrate symbolic

execution.

b. Compatison of Rules for Symbolic Execution with Rules for Backward Substitution

Most verification systems are based on the "Hoare proof system."3 The Hoare proof system is briefly
described below in terms of the assignment statement and compared to SDVS, SDVS being a variation of the

Hoare proof system.

In the Hoare proof system there is a formula of the form P{S}Q for each programming language
statement S. The formula P{S}Q asserts that if formula P is true before executing S and S halts, then the
formula Q is true after executing S. P is called the precondition and Q is called the postcondition. These
formulas comprise the set of axioms describing the programming language behavior and are used to generate

lemmas. The proof of the lemmas guarantee a program is consistent with its specification.

For example. the execution of the assignment statement X =e, where X is a progrém variable and ¢ is
an expression, results in a state change in which the value of variable X is changed. the program counter is
incremented, and the path condition remains unchanged. In more detail, all occurrences of variables in
expression e are replaced with their values and the new value of variable X is the evaluated expression e. The
backward substitution axiom for assignment is Pf{X:e}P. where P Z(means substitute the expression e for

all free occurrences of X in formula P.

A specification for the correctness criteria for REGSWITCH written in the Hoare proof system is
(X=X & Y=Y {TEMP=X NEXT X=Y NEXT Y=TEMP} X=.Y & Y=_.X). With one additional rule
we can prove that this formula is true. The additional rule, commonly referred to as the composition rule,

specifies the behavior of a sequence of instructions. The rule is writien

P{O}R R{SIT
P{Q NEXT SIT

and means that if the formulas above the line are true (all axioms are true). then the formula below the line is

true.

A Hoare style proof of the correctness of REGSWITCH is as follows:

DX=Y&TEMP=X{Y=TEMP} X=Y & Y=X (assignment axiom)

DY=Y&TEMP=X{X=Y}X=.Y&TEMP=X (assignment axiom)

......

IV=Y&TEMP=X{X=YNEXTY=T"MP} X=Y&Y=X
(1,2. and composition rule)

HY=Y& X=X {TEMP=X} Y=Y & TEMP=X (assignment axiom)

55Y=Y&X=X{TEMP=XNEXTX=Y NEXTY=TEMP} X=Y&Y=X
(3.4, and composition rule)

This proof is typically displayed as an annotated flowchart as in Figure 1.

|

TEMP = X

"
v

TRUE
Y=Y

>
"
X

a s 8 3)

-
<
n
<
-
m
=
O
n
>

x
n
<
Qo —> Q—> P—> o

X=.Y&TEMP = .X
\
) Y = TEMP
l' X=.Y&Y = .X

Figure 1: Hoare style proof of REGSWITCH

In summary, the Hoare proof system consists of axioms for each programming language statement (¢.g.,

assignment axiom) and rules for inferring new theorems from the axioms (e.g., composition rule). In Figure 1

we started with the postcondition pushing it backward through the program resulting in the weakest

precondition, i.e., the minimum assumption necessary for the postcondition. Alternatively, we could have

started with the precondition pushing it through in the forward direction resulting in the strongest

postcondition. a total specification of the variables’ values in the final state. This is called symbolic execution. !

Figure 2 shows the proof of REGSWITCH using symbolic execution.

The major difference between backward substitution and symbolic execution using SDVS is that partial

correctness is usually proved using backward substitution and total correctness is proved with SDVS. Partial

correciness means that a program is proved correct assuming that the program halts. With SDVS’s symbolic

exccution only halting programs are proved correct. For non-halting programs the symbolic execution does

not halt and the postcondition is never satisfied.

..................................
..
DAL A P A o 0 G 2 A P AR o RS S A P S S et
-

» fae h . _Bav " . . da- -
- SN MW, K, LWy S, ¥ Na¥N. - M ~Ma¥Wa u%a ¥

iX:.X&Y:.Y&TEMP:.TEMP
TEMP = X l
1 X=.X&Y = .Y &TEMP = .X
X =Y l
‘ X=.Y&Y = .Y&TEMP = .X
Y = TEMP| | -
*X:.Y&Y:.X&TEMP:.X =)
X=.Y&Y = .X

Figure 2: Symbolic Execution of REGSWITCH

¢ State Delta Specification of ISPS

CNUVSCISPS programs are symbolically executed. Axioms describing the symbolic execution of each

ISP 1 -uction are tormulas called siate delias. A state delta is of the form

lpre P

emv F

mod: M

post: Q]
where P 1s the precondiuon and Q is the postcondition, both written in the first-order language described
above. P and Q are analogous to the precondition and postcondition in formulas of the Hoare proof system.
As each formula P{S}Q defines a state change, each state delta also specifies a state change. The
programming language statement. S, is not explicitly stated in the state delta. This means the state delta is a
formula in which no distinction is made between control and data. "E" and "M" in the state della
specification are lists of program variables and/or program counters. E and M are not necessary for symbolic

execution. but facilitate the application of state deltas for symbolic execution.

A state delta specification is defined for each ISPS statement, These are axioms of the proof system.
Symbolic execution is the application of these axioms in a proof. A state delta can be used in a proof if the
variables in its environment list E have remained unchanged since the state delta was first proved. and if the
precondition P is true in the current state. The result of the state delta application is that the postcondition Q

will be true at some later time at which the values of no variables other than those listed in the modification
list M have changed.

14

........

-t - - e - AT R S a” & . Te " e " Te . . - - . - - - - - - - - - - - - - - -
AN e T W e Ny N e . LR O e S e WD T STt L SR __.'..‘,\ A e
LY ‘.‘\i?f\f‘. AR A A A AN S I R AL B AT DN ._."-. "' PN N s Nt \'\"\' oo

RN LA SRR AL SA S L FECR St At 2ot L ond o e |

The application of a state delta in a proof can be explained in terms of the timeline shown in Figure 3

where time tl comes before 2 and 2 before 3.

state delta proved precondition true, postcondition true
state delta applied

only variables in
variables in environment modification list have
list have not changed changed
. i
t1 t2 t3

Figure 3: State Delta Application

A formula expressed as a state delta is true at tl. This formula can be used in a proof at a later time @2 if the
precondition becomes true and the variables in the environment list have not changed between tl and 2. The
application of the state delta results in a state change at time t3 where the new state is consistent with the
postcondition and only the variables in the modification list have changed. The modification list relieves the
pre- and postcondition of the burden of copying static information (information that does not change during
the state change) forward through the proof. In the context of microcode verification, the environment list
may relieve the pre- and postcondition of the need to contain control information (e.g.. the ISPS program
counter) and also the context in which the state delta was first proved (e.g.. ROM cannot change before the

state delta is applied in a proof).

Examine again the body of the REGSWITCH procedure. This computation can be represented by
three state deltas where the ISPS program counter (upc) is explicit, or by one state delta where upc is implicit
from the state delta’s nested structure. Figure 4 depicts the three assignment statements as three state deltas
and Figure 5 depicts the same program segment as one state delta.

As shown in Figure 5, a state delta can be part of the postcondition of another state delta. When this

occurs, it means that if the precondition of the main state delta is true, the state delta(s) in the postcondition of

- the state delta is(are) also true and may be applied. The state delta in the postcondition in Figure § specifies
; the next instruction. replacing the explicit reference to upc. Because upc is in both the environment and
ﬁ R modification lists of each state delta in Figure S, each of these state deltas can only be applied once in a proof.
j If the three assignment statements were embedded in a repeat loop their associated state deltas would be
j applied repeatedly in a proof: upc would not be listed in anv of the state deltas’ environment lists.

The nested state delta structure is useful if the translation of an ISPS program to state deltas is

incremental; i.e., just before an ISPS instruction is symbolically executed; its state delta is generated. This is

\, & ¥

Y
AR

15

T p 8l
e

e et T e e T T e N e U LT T N U NN S S et e A e e - "
I A e TR e A N O AR U P T A T

*

LIPUL AL IR Y R R N i
. N v 0.
T P PSP N S P I

|/
W
P [pre: REGSWITCH\upc = § State Delia |
' env:
e mod: REGSWITCH\upc, TEMP
hat post: #TEMP = X & #REGSWITCH\upc =9)
- [pre: REGSWITCH\upc = 9 State Delra 2
[} ':j env.
oo mod: REGSWITCH\upc, X
o2 post: #X = .Y & #REGSWITCH\upc = 10}
o [pre: REGSWITCH\upc = 10 State Delta 3 ’
S2) env:
:'_: mod: REGSWITCH\upec. Y
e post: #Y = TEMP & # REGSWITCH\upc = 11]
- “.
. Figure 4: REGSWITCH Expressed as Three State Deltas with Explicit Program Counter
»
)
o fpre: REGSWITCH\upc = 8 SD1
}: env: REGSWITCH\upc
w mod: REGSWITCH\upc. TEMP
_ post: # TEMP = X & [pre: true SD 1.1
23 env: REGSWITCH\upc
o mod: REGSWITCH\upc. X
. post: #X =Y & [pre: true SD 1.2
e env: REGSWITCH\upc
e mod: REGSWITCH\upc, Y
-y post: #Y = .TEMP]]]
.' -
'_‘E:: Figure S: REGSWITCH Expressed as One State Delta with Implicit Program Counter
'
< desirable for reducing execution time and storage (SDVS has an incremental ISPS translator). If Sl...Sn are
-_:: ISPS statements and TR is a function that translates ISPS programs to state deltas then the translation of a
% :'.: sequential program segment is TR(Sl NEXT..NEXT Sn)= TR(Sl)TR(S2 NEXT..NEXT Sn). Figure 6
\ shows the first incremental translation of the three assignment statements in REGSWITCH.
- [pre: REGSWITCH\upc = 8
. env: REGSWITCH\upc
'.:: mod: REGSWITCH\upc, TEMP
N post: #TEMP = X & TR(X = Y NEXTY = TEMP)]
M
, Figure 6: Incremental Translation of REGSWITCH d
N
; .\‘ We have demonstrated the translation of assignment statements and sequential program segments 10
state deltas. Similarly, there are translations for branching. loops and procedure calls.
\., The proof of REGSWITCH using state deltas (in the nested structure) as axioms of the proof system is
i
' 16

RS RS LS AW A VI ARS .‘JT

#Y=X&
#X=.Y & #X=.Y &
#TEMP = X #TEMP =X #TEMP = .X

SD1true applySD1 SD 1.1true applySD 1.1 SD 1.2 true apply SD 1.2

upc has not a?Ir(‘ilyrléRI?P upc has not or;lgfdu):gc upc has not or;lr;\/du\r;c
changed | on change| €Manged |can changev changed | .., change |
t1 t2 t34 t4 t54 t6 t7h
can no longer can no longer can no longer
apply SD 1 apply SD 1.1 apply SD 1.2
REGSWITCH
specification
satisfied

Figure 7: SDVS Proof of REGSWITCH

shown in Figure 7. The state deltas specifving the three assignment statements are used in the proof at times
2. 4. and t6. Because upc is in the modification list. upc may change value. Once axiom SD1, SD 1.1. or SD

1.2 is used it cannot be used again because upc is also in the environment list.

2. Symbolic Expression Simplification

Notice that the result of symbolically executing REGSWITCH is the strongest postcondition (#Y =
X& #X = .Y & #TEMP = X), and the formula specifying the behavior of REGSWITCH is (#Y=X &
#X=.Y). Therefore, the following lemma must be proved to show the specification is consistent with the
program: ((#Y=X& #X=Y & #TEMP=X) =(#Y=X & #X=.Y)). This is trivial to show. but for
more complex programs the lemmas generated from either a Hoare proof system or SDVS may require
lengthy proofs using the axioms in the first-order language. Symbolic execution (the application of svmbolic
execution axioms written as state deltas) is completely automated. However, the simplification of a symbolic
expression and the proof of consistency with the postcondition is partially automated using a theorem prover.
Simplification is an interactive process and may require user assistance. The theorem prover uses axioms in
the theories of integers, bitstrings. arravs. and coverings. SDVS automatically applies some of the axioms in
proofs via pattern matching and demons. Other axioms are invoked by the user when needed, thus avoiding

unnecessary expression simplification and reducing execution time.

17

o

Y .

(A 3. induction

e

:\ In order to prove theorems about programs containing loops. we use induction over a set ordered like

:: natural numbers; we want to show without testing each possibility that a property holds no matter how many

e (finite) number of times the loop is executed. The property is frequently called the loop invariant, abbreviated

'r: INV. The rule of induction for loops in SDVS is:
w9 Basis
) [pre: true

i env: (E)

o mod:)
-_.j‘_ post: ((# X =initial) & INV)]
_ (Induction Step
P {pre: ((initial< .X < final) & INV)
. aff
, env: (El)
’ mod: (M N
- post: ((#X=.X +1) & INV(\#))]. E1 disjoint from M1
o Conclusion
o [pre: (initial < final)
3 - env: (EUEl)
o mod: M1
.‘:-:' post: ((# X =final) & INV (\#))]
" To demonstrate the induction rule consider the following ISPS program fragment called
LOOP-DEMO:

'_ B=1 NEXT 1
o C=A NEXT 2
o L := REPEAT 3
I BEGIN 4
g IF B > 100 => (LEAVE L) NEXT 5

- B = B+1 NEXT 6
- C = C+A 7
END 8

We want to prove if 1 < B < 100 then the loop invariant of LOOP-DEMO is (#C = #B*.A). Bis the loop

' variable. If we can prove:
t':' Basis
.':f [pre: .upc =1
N env:
-:: mod: upc
v post: ((#B=1) & (#C = #B*A) & (#upc = 4))]

R *
:::. and
3
&
24

~

18

::":-“Z-"i-:‘l-":-‘v:-‘;\}‘:-‘:-"'.-":-‘}‘Z-"Z-"j- CWANLTIN T s A e e e e e e e T

LI U TRA S A DA AT R AT O e e N PP S S S AP i‘.'{:'z':'z':'v'.‘1'.;-';:5',_3'

Palicaa = st A ies el Aol o A" et e it s .7"

[pre: (1 < .B<100) & (.C = .B* .A)& (upc = 4))

g Induction Step
M

env:
mod: upc. B.C
post: ((#B=.B + 1) & (#C= #B* A) & (#upc = 4))]
N
Al
-2 then we can conclude
o
X [pre: .upc = 4
env:
mod: upc, B.C

post: ((#B=100) & (#C = #B* . A) & (#upc = 4))]

thereby avoiding executing the loop 100 times.

The basis is true at the beginning of the repeat loop because

1) #B=1 as the result of the assignment statement on line 1

2) #C = #B* .Abecause #C = A fromline2and #C = A=1* A= #B* A

The induction step is true because

1) #B = .B + 1 from line 6

2} #C= #B* A because #C=(.B*.A) + A from line 7 and #C=(B*.A) + (A*]) = (B+1)*A
= #B*A

4. Mapping

States in implementation the are a function of states in the specification. A mapping construct is
necessary when state components in the specification have different names and structure than the
corresponding state components in the implementation, This situation arises quite naturally in the microcode
verification problem where the computer language specification and machine descriptions are derived

independently. A mapping shows how the computer language behavior is implemented.

For example. consider using the program REGSWITCH as a specification. The theorem stating the

correctness criterion of REGSWITCH can be written

[pre: (ISPS REGSWITCH)
.REGSWITCH\upc =REGSWITCH\STARTED
env:
mod: ALL
post: #Y=X #X=.Y
#REGSWITCH\upc =REGSWITCH\HALTED]

where (ISPS REGSWITCH) is an abbreviation for the formula in Figure 6 (i.e.. (ISPS REGSWITCH)

abbreviates the set of state deltas resulting from the translation of the ISPS program). and STARTED and
HALTED are SDVS defined labels for the first and last lines of the ISPS program.

Suppose REGSWITCH (an ISPS program) was implemented by the follow.ing ISPS program called

IMPLSWITCH:

IREGSWITCH{IX<15:0>,1Y<15:0>,AC<16:0>) :=
BEGIN

** DECLARATION.SECTION **
{ ITEMP<15:0> .

** SWAPPING.FUNCTION **
ENTRY {MAIN)

BEGIN
ITEMP = IY NEXT
AC = 1Y NEXT
IY = IX NEXT
IX = ITEMP
. END

END
The variables X and Y are implemented as IX and Y. respectively. Each state change in REGSWITCH does
not correspond to each state change in IMPLSWITCH. but the desired property that #Y = X & #X = .Y
holds at the end of IMPLSWITCH. The following theorem states that IMPLSWITCH implements the
desired property that holds in REGSWITCH;:

[pre: (ISPS IMPLSWITCH)
(MAP X (IX) EQ)
(MAPY (IY) EQ)
(MAP TEMP (IREGSWITCH\OTHERSTUFF))
(MAP REGSWITCH\OTHERSTUFF (AC ITEMP))
(MAP REGSWITCH\upc (IREGSWITCH\upc))
(ONE-TO-ONE MAPFUNCTION)
REGSWITCH\STARTED =MAPFUNCTION (IREGSWITCH\STARTED)
REGSWITCH\HALTED = MAPFUNCTION(IREGSWITCH\HALTED)
env:
mod:
post: (ISPS REGSWITCH)]

where the "MAP" terms in the precondition of the theorem specify which objects in IMPLSWITCH

implement objects in REGSWITCH, and empty environment and modification lists reduce the state delta to

a formula that is an implication (i.e.. pre = post). OTHERSTUFF is an SDVS defined variable; it does not .
appear in the [SPS programs. The variable TEMP in REGSWITCH is not implemented (i.e.. it is an auxiliary

variable). This is specified by mapping TEMP 1o OTHERSTUFF in IMPLSWITCH. Similarly. AC and

ITEMP in IMPLSWITCH de not correspond to any variables in the specification, REGSWITCH. The Y
predicate symbol EQ in a MAP construct means that the value of the variables in the construct are equal.

Finally, ONE-TO-ONE specifies that its argument is a one-to-one function. Using the map construct. it is

20

P Py T

‘: ..-. . .~. '-. . ,-'... N N AT S S S S T S . - .--. -------- e e e e e e e e e e . l“.h ‘~" - 4‘. - N l~_ . o -~ -4’ "
a L e AP 1.\“ A N VRN AR TRV TN Lx"h-J-‘s\ A \-‘\LJ.&

LA A A A S A A S S S N R At Gl A A S e o il Nt el g S8

possible w prove that (1) one ISPS program is implemented by another program or (2) one ISPS program

umplements an abstraction of another program.

D. WHY MICROCODE VERIFICATION?

SDV'S developers are focussing on microcode verification because microcode is used extensively in
computer systems. and microcode is among the most heavily used software in computer installations. :
Additionally. microprogrammable hardware is becoming more complex and will have larger control stores.
As a result. the design time, cost. and risk of error are increasing. and the necessity for reliable microcode is
becoming more acute. Therefore. the development and application of analytical software verification

techniques to microcode will have great payoff.

Prior to the advent of microcode, the hardware directly exccuted the computer instruction set. The
architecture of the computer was established when the components of the computer were assembled. Thus,

the computer’s functional operation could not be changed except by hardware modification.

Microcode allows the design of a computer 10 be more flexible. Instead of directly executing the
computer instruction set the hardware interprets the computer instruction set by executing microcode. In

other words. microprogramming involves programming the contro} unit of a computer. R

With microcode. there can be more than one instruction set on a single computer. This means that (1)
programs written for older computers can run on new computers, (2) a computer can be tailored to a
particular application (e.g., signal processing), and (3) new computer languages (e.g., 1750A) can be
implemented on existing computers. Microcode also permits more than one computer model for an
instruction set. Therefore. families of computers can have the same instruction set, allowing growth potential .
without reprogramming for each new computer installation. IBM took advantage of this concept when it y
introduced System 370: the System 370 has the same instruction set as the previous computer system. the

Svstem 360.

Notonly is 1t important to focus on microcode verification because of the widespread use of microcode
and the critical role microcode plays in computer systems. but application of verification methods to ’
: microcode reveals new issues in specification languages. in the relationship of specifications to
implementations. and in the development of theories. A theory of bitstrings based on the theory of integers ‘

has been constructed for this application.

Adat ‘0n 1y Cany . A A S R AR S A T AR oA S Y DARYRIHAS A 8 €00 A\ L A e e Ui S - o e e b Jier A 4 J"!

i

-
a’a

)
A E. MICROCODE VERIFICATION
A
')' b2
:-f. The diagram in Figure 8 represents the hierarchy of conceptual levels of a digital system that SDVS
3
a3
A currently considers.
"
.
"e computer language program spec/algorithm
>
h Y
{:,'7
I_'-;l computer language semantics | + omputer language progra
“J" A
“ .
.
L :-‘
o host machine + microcode
o
\ Figure 8: Hierarchy of Digital Systems
. Each level of the hierarchy utilizes or is implemented by the level below it. The upward pointing arrows
N represent implementations; particular computer language semantics (behavior) are implemented by some
':\ . o
:.: host machine executing microcode and a program specification or algorithm is implemented by a computer
::': language program that behaves in a predictable manner. The correctness criterion of each implementation is
WA
stated as a mathematical theorem.
-
o Microcode verification is concerned with the relationship of the “computer language level” to the
, “microcode level”. We want to show that a computer operating on some particular microcode correctly
.
R implements a computer instruction set.
L.
3

The data structures at the microcode level include registers. control circuits, and data buses. The

4,

N

operations include transfers of data between data structures and arithmetic operations. Data structures and

operations at the instruction set level are generally more abstract than at the microprogramming level. For

:: example. at the instruction set level. the arithmetic\logical component of a computer can be viewed as a
o black box™: it performs arithmetic and logic operations when operands are supplied. At the microcode level,
.
: the anithmetic\logical unit consists of many registers and data paths manipulated by control circuits.
y
) A typical instruction in a computer instruction set is a LOAD instruction. The execution of a LOAD
~
~I
>
A

a
4
[

'
.
.
»
s
“
'
s
.
'
¢
x
«
v

'a*2%s "

:} istruction causes data in memory to be moved to a register. At the microcode level, the hardware decodes
N 4z LOAD instruction and executes & microprogram that will esteblish data paths among a network of

registers and data buses to perform the loading function.

: To prove that microcode correctly implements a computer instruction set we need to formally specify
:._: the behavior of the microcode in addition to specifiing the behavior of the computer instructions. The
specifications of the microcode behavior and the instruction set behavior are merely descriptions of the
- computer at different levels of abstraction. The behavior of the computer instructions is specified by defining
E: the computer at a level of abstraction seen by the programmer. The specification of the computer at the
Y microcode level is more detailed: it contains registers. operations. and programs hidden from the
l programmer. Our goal is to prove that the descriptions of the computer at different levels of abstraction are
consistent.

'_:j The specifications of the computer can be described in the formal language of state deltas. Theorems
;' can be deduced from these specifications. Alternatively, the specifications can be described in ISPS and then
r translated 1o state deltas; any computation that can be described in ISPS” can be described in terms of state
deltas. The advantages of using ISPS are:

1) it is easier to write a specification in ISPS

, 2) a fast evaluation of the specifications can be made by using existing ISPS simulators and compilers

-

1 3) there exist many ISPS descriptions of computers

7
' The theorem stating the microcode correctness criteria takes the form that the microcode behavior
" implies the instruction set behavior (i.e., the properties of the instruction set are preserved in its
5': implementation, the microcode executing on the host machine). Both the host machine and the instruction

- set behavior are specified as ISPS programs. Therefore, the correctness proof involves showing that one
program is correctly implemented by another program. Intuitively, it might be expected that all states and
state changes at the instruction set level (the "target machine") must correspond to selected states and state
changes at the microcode level (the "host machine”). However, only selected states and state changes in the

target machine may correspond to those of the host machine because

1) the effect of a sequence of state changes may be implemented by a differently ordered sequence
2) auxiliary variables used to describe the targei machine may not be implemented

3y various behaviors at the target level may not be describable in [SPS

: i e _the subset of ISPS used 1n SDVS

e R A R B

o+

7l

7

It is expected that the third item above will occur in very few situations and those behaviors can be described

G

in the logical language. Annotations (e.g.. labels. logical formulas. lists of variables) inserted in the ISPS

description of the target machine enable SDVS to extract the selected states and state changes. Thus. we

Iy

anticipate that an annotated ISPS program of the target machine will suffice and SDVS will derive an

"abstract specification” of the computer language semantics from the annotated ISPS program of the target

A

machine.

Recall that a state consists of the current values of the variables. the value of the program counter. and
the path condition. If the ISPS description of the machine is labeled. a state change results when the
computation progresses from one label to the next. The labels in the program mark a path through the
program, and thus implicitly denote the program counter and path condition. Consequently. the mapping
from a state in one machine to a state in another machine is partitioned into two types of mapping: (1) labels
in one ISPS description are mapped to labels in the other machine’s ISPS description, and (2) variables of one

ISPS description are mapped to variables of the other machine’s [SPS description.

Figure 9 shows how SDVS is used to prove that the host machine executing particular microcode

correctly implements the target machine.

host ISSPPSSdescription N doltas & 4 TRUE
target | descnpt)on ost state deltas & microcode /
microcode SDVvs '_"{& map} = > target state deltas > (SOVS| == FaLSE

map

Figure 9: Microcode Verification Using SDVS

First, ISPS descriptions of the host and target, and a map of the target to the host are input into SDVS. The
map includes a map of labels in the target to labels in the host (known in this paper as "map labels”). SDVS
then generates state delta descriptions of the target and host from the ISPS descriptions. Conceptually, one
state delta is initially created for each ISPS instruction. The state deltas of all instructions from one map label
to the next map label in each description are then svmbolically executed to form another set of state deltas.
SDVS then constructs a new state delta of the form
{host state deltas & microcode & map => target state delias} where "host state deltas” refers o the state
deltas describing the computation between map labels in the host machine (similarly for target state deltas).

SDV'S then assists the user in determining whether this State delta is true. If the state delta is true. we have

CAAS! 00

proved that the microcode correctly implements the instruction set.

s

7

As mentioned above, the ISPS description of the target machine may be annotated because only

selected states in the target description may correspond to states of the host. SDVS abstracts a specification

Y »
‘et -.’u’s‘-:{: .

i LAXS
ro
=

:-‘ e . e e~ R -.‘-' c. o '-‘ . AT S A A P LI
QR 04 o AT AEA I A SR o et P R e e e e e e e _1
-.n-n--.a;\.a.ku--‘x NS PPy Yy S) '.4:.!:. Andl 1 s {Af-!':ll'u':a'-. -_l‘ f:n':l:_‘. e _f.\f:.f:‘ﬂ'_vf}-' L PRI Sy _-‘:'nﬂ'.A'

A

LS N

R

LA
FAr

ML REUN

from the annotated ISPS description. Call it the abstract specification. The abstract specification is consistent

vith the target machine and must be proved consistent with the host machine executing particular microcode.
A tvpical abstract specification for the target ISPS description would be a state delta specification of each
target instruction. Each state delta would be of the form

[pre: pre-instr

env:

mod: {target machine variables}

post: post-instr]
where pre-instr is a formula specifiing the variables before execution of the target instruction. instr, and
post-instr is a formula specifying the variables after execution of instr. The abstract specification can also be

hand-generated.

In practice verification and simulation techniques are used in conjunction to achieve a high level of
confidence that the microcode correctly implements the computer instruction set. The descriptions of the
target and host machines are assumed 1o be correct in the verification method. These machine descriptions
are large. and thus. it may be difficult 1o have & high level of confidence in them. Either simulation or a
cerrectness proof with an abstract specification can increase the level of confidence in each machine

description,

By supplving sample input values, simulation gives us a "quick and dirty” evaluation of each
description. A certain degree of confidence in each specification is obtained with simulation, but there is
usually a strong possibility of undetected errors. To increase the degree of confidence in each specification.
each specification can be shown to be consistent with an abstract specification via symbolic execution and
simplification. The abstract specification, defined as a state delta, may initialize input variables to data valucs
and thus. achieve what simulation does. The abstract specification may not initialize any variables and the
proof that each machine specification is consistent with the abstract specification may suffice for verification.
And of course. the abstract specification may initialize some variables and not others, and thus. give us
something less than complete verification. but something more than simulation. With confidence in cach

machine description. symbolic execution, simplification, and mapping are uvsed to achieve a high level of

confidence that the microcode correctly implements the instruction set.

. Y- ‘. - - - ‘u e S - L “ -t Py Ll '-.' :’ aGAAN AR M * ."—"."‘.‘1‘1

SECTION 1
o A CASE STUDY

A. MACHINE DESCRIPTIONS

. To discover and solve both theoretical and practical problems with microcode verification using SDVS.
X a small "toy" computer has been designed which contains many features relevant to a real computer. This
computer, called the H-machine. is structured around a simplified version of the AM2901. a widely used

. microprogrammable arithmetic/logic unit (A1.U).

. In the manner previously discussed, the H-machine is specified at two levels of abstraction. The
instruction set level description is called the target machine and the microcode level description is called the

- host machine.

The target machine is the computer architecture as seen by a programmer. Figure 10 contains a
diagram of the target machine. It has a memory. TMEM, that stores both data and instructions. and four
rezisters. Two of the registers. R1 and R2. can be referenced in target instructions; they can be accessed by

the programmer. The other two registers. PC (program counter) and TIR (instruction register), are used for

« 8 & At 2 4

fetching, decoding. and executing target instructions. There are eight target instructions in the instruction set.

. Figure 11 lists the instructions and their descriptions.

Consider the LOAD R1 instruction. The execution of LOAD R1 causes data in TMEM 10 be moved to
g R1. Suppose there is "LOAD R1 15" at locations 0 and 1 in TMEM and PC contains the value 0. The first

word of the instruction is fetched from TMEM and stored in TIR. PC is incremented to 1. The instruction is

..

decoded. The second word of the instruction is fetched and stored in TIR. It contains the address, 15, where

o 6 e

the data is located. PC is incremented to 2. The address is used to fetch the data and then the data is stored in

R1. PC contains the location of the next instruction. and the cvcle begins again.

-GN

Appendix A contains the ISPS description of the target machine. The main routine is a cvcle of

F 2 g]
PR SR,

fetching. deceding. and executing target instructions,

Figure 12 depicts the same computer. but at the microcode level. In the host machine. machine

components were addcd for fetching and decoding the microcode. Also. registers and data paths controlled

hy the microcode were added. Microcode programs in the microcode memory, UM, interpret target
mstructions. The format of the microinstruction is described in Figure 13. The ISPS description of the host

machine 1s in Appendix B. The microcode initialization is in Appendix C.

R AN PP e el

Al R PR S S LRSI Ca
Ll o

-

.'__.;_‘.-‘_‘ R ,:t_‘.-_4.-__.‘_\.‘_.-'\.*._.‘\‘.:\.-_\.-__."_.--_..' o X
PP TR TP A PR LR S . G R A N |

PPN SEDEIP P APIP I IR ST IV APSERERT AT I APAP RS I

’I.l.

s

i
s & & &

TMEM}

a¥a¥a! 44

Y INST.FETCH

TIR C

" a2 A&
‘5_-_-,-.‘.

A

: 7777t

INST.DECODE.EXEQ

. R2
2
v,
\ Figure 10: Target Machine
N
;: As an example, the LOAD R1 instruction is interpreted by executing 8 microinstructions. 3 of which
k are for fetching and decoding. The following summarizes the actions of the 8 microinstructions executed to
. perform the loading function:
L 1) MAR « RAM.2901{15]; SEQMUX « 1 instruction fetch
2) RAM.2901[15] « RAM.2901[15] +1: HIR « HMEM[MAR]: SEQ MUX « 2
N 3) SEQ.MUX « INST.OP decode
N
:: 4) MAR « RAM.2901{15]: SEQ.MUX « INST.OP + 1 execution of LOAD R1
‘ 5) RAM.2901[15]) « RAM.2901(15] + 1: MEM.IO « HMEM [MAR]}: SEQ.MUX ~ INST.OP + 2
N
N 6) MAR « MEM.IO: SEQ.MUX « INST.OP + 3

7y MEM.IO « HMEM[MAR]J: SEQ.MUX « INST.OP + 4

8) RAM.2901[1] « MEM.]O: SEQMUX « 0

MR NN WS S LN i et B

L LLAS i Sirta Ak &y
X b
“
[
y Target Instruction Abbreviation Description
| 1000 T 0000 r 00000000 LOAD R1 address R1 <- TMEM|[address]
i address
1001 | 0000 | 00000OOO LOAD R2 address R2 <. TMEM[address]}
address
3]
1010] 0000] 00000000 STORE R1 address TMEM[address] <- R1
~ address
-
N 1011] 0000 T 00000000 STORE R2 address TMEM[address] <- R2
N address
[1100] 0000 [00000000 | ADD R1< R1 + R2
% .
» [707 | 0000 | oooooooo | MULTBYS RICRI®S
1110 J 0000 T 00000000 JUMP address PC <- TMEM[address]
- address
"l
N 1111 | 0000 | 00000000 STORE PC address ~ TMEM[address]<- PC + 1
address
:, Figure 11: Target Instructions
1 B. CORRECTNESS PROOF
::j As described in Section IE a mapping must be defined from the target machine to the host machine.
‘;f To define the mapping, the main routine of the ISPS description of the target machine is labeled as follows:
N REPEAT
BEGIN
TLOOP: INST.FETCH() NEXT
D] INST . DECODE .EXEC()
o) END

The main routine of the host machine is labeled as follows:

L EL S N Nl S G S S Sl Sl Sl M
]
N

O ANt AL N e Ha et b oy

HMEM
MEM.10
R
, }
. HIR AM2901.SIMPLIFIED
: |- - - - RAM.2901
i
]
B SEQ.MUX
N e
Lol um
o SOURCE
1
|
5 A,
i
]
' : | R
|
!
L
|
o EXEC
AL 7 Z
|
)]
o T r ALU |
! ! L T
! T -
AL
\ U e e e e - o i P
——————— < DESTINATION
|
7
' //// -
|
|
1
|
| CONDITION.BITS MAR
]
|
| i
|
__________________)
Figure 12: Host Machine
30
)
N T e e e L e el L e S R L N S ARG T

RAMCRE A A i A Anh Solh) |

Birs Field Name Description
35-32 sr¢.2901 ALU sourcels)
T op.2901 ALU operation
RIS dest.2901 ALU destination(s)
23 sparc
n c.in ALU carry-in
26-21 seq.mux.sict control line for register SEQ.MUX (instruction sequence)
10 1d.ir control line for register HIR
18 Id.mar control line for register MAR
17 oe.db control line for storing data in HMEM
- 16 r.wf control line for fetching data from HMEM
12- 1\ A.adr one of 16 registers in ALU
811 B.adr one of 16 registers in ALU
0-7 next.adr next micreinstruction address

Figure 13: Microinstruction Format

REPEAT

BEGIN
AMD2901.SIMPLIFIED(...) NEXT
MEM.I0(...) NEXT
SEQ.MUX(...) NEXT
MAR(...} NEXT
HIR(...) NEXT

HLOOP : MIR=UM[SEQ.MUX]
END

The state at TLOOP corresponds to the state at HLOOP where SEQMUX = 0, R1 is mapped to
RAM.2901{1], R2 is mapped to RAM.2901{2]. PC is mapped to RAM.2901{15]. TIR is mapped to HIR, and
TMEM is mapped to HMEM. This means the state in the target machine before a target instruction fetch

must correspond to the state in the host machine before a target instruction fetch.

Symbolic execution of the target machine from TLOOP to TLOQOP results in 8 state deltas, one for each
target instruction. These state deltas comprise the abstract specification SDVS derives from the annotated
ISPS description of the target machine. Each of these state deltas specifies the state change resulting from the
execution of a target instruction on the target machine. Call these state deltas target state deltas. Between 5

and 8 ISPS instructions are symbolically executed to derive each target state delta.

Symbolic execution of the host machine from HLOOP to HLOOP specifies the state change resulting
from the execution of a microinstruction. About 30-40 ISPS instructions are executed for each
microinstruction and 4-8 microinstructions implement a target instruction. Therefore. about 100-300 ISPS
instructions are execuled for each target instruction in the host description compared with 5-8 ISPS

instructions in the target description. The theorem stating the correctness criterion is:

”
i 3]

LN - -u e -c- . ----------- .'. . he '\' e - " .' . . _' .~' u.' . -_' " .' .. " - .' .'
AP K R .‘ { (I‘&!{\ \ i' \.‘5. “. ;'_‘!\ X \ .n-‘_ L .f_ 2 -_ ..(" ,-. e e e T e '.‘-'.-.‘.' - S

W&
1§
)
k. Theorem 1:
.\
: [pre: (ISPS host)
N (MAP ...)
‘ (MICROCODE)
A env:
:& mod:
) post: (ISPS target)]
A; (ISPS host) is an abbreviation for the set of set deltas that result from the symbolic execution of the
. ISPS description of the host machine between map labels. The notation (ISPS host) is input to SDVS where
N "host” is the name of the file containing the ISPS description of the host machire. Similarly. for (1SPS
* target). (ISPS target) represents the SDVS derived abstract specification. (MAP ...) and (MICROCODE ...
v abbreviate the mapping between machines and the microcode initialization. respectively. The current form of
the map assertion for the H-machine is
g
;:3 (MAP PC (RAM.2901[15]) EQ)
(MAP R1(RAM.2901[1)) EQ)
: (MAP R2 (RAM.2901[2)) EQ)
- (MAPTIR (HIR) EQ)
. (MAP TMEM (HMEM) EQ)
o (MAP TARGET
: (MACHINE\upc SEQ.MUX MACHINE\ROM UM RAM.2901[15] RAM.2901{1}
.. RAM.2901[2] HMEM HIR))
& ’ (MAP TARGET\OTHERSTUFF
(ENTRY IO.R.WF DATA . ENABLE MEMDATA ADR MEM.IO EXEC
& DESTINATION SOURCE P2901 RAM.2901{0] RAM.2901(3]
- RAM.2501[4:14) SR ALU C.IN.2901 I ALU.D.BUS B.ADR.2901
N A.ADR.2901 AMD?2901.SIMPLIFIED CONDITION.BITS SELECT Y X MIR
s MARLOAD MARDATA MAR IRLOAD INSTRUCTION
MACHINENOTHERSTUFF))
N (MAP TARGET\ROM (MACHINE\ROM UM))
» (MAP TARGET\upc (MACHINE\upc SEQ.MUX)
Also, consider a hand-generated abstract specification for the target machine, The abstract specification
y for each target instruction on the target machine takes the form:
’ [pre: pre-instr
. env:
\ mod: {target variables}
post: post-instr]
- Appendix DD contains a hand-generated abstract specification for the target machine of the H-machine
example, Each of the ecight state deltas in the abstract specification is given one of the following names:
's loadrl.sd. loadr2.sd. storerl.sd. storer2.sd. rladdr2.sd. rltimesS.sd, jump.sd, and storepc.sd. The theorem 9
» asserting that the hand generated formulas are consistent with the ISPS description of the target machine is: !
.’ :
v 9
: i
k) i
1
]
)
et e e e e ¢

Y Theorem 2:
o [pre: ((ISPS TARGET.ISP))
\2 env:
mod:

posi: ((EVAL loadrl.sd) (EVAL loadr2.sd)
. (EVAL storerl.sd) (EVAL storer2.sd)
~ (EVAL rladdr2.sd) (EVAL rltimesS.sd)
(EVAL jump.sd) (EVAL storepc.sd)))]

=~ The proof commands submitted to SDVS to prove Theorem 2 are
o0 ((readaxioms BSAXIOMS)
~ {prove macro.sd

- (prove loadrl.sd (rewrite |(.PC + + 1(16)K15:05} chop) *)
(prove loadr2.sd (rewrite {.PC + + 1{16))<15:0> chop) *)
(prove storerl.sd (rewrite |(.PC + + 1(16))X15:05] chop) *)

. 7

N (prove storer2.sd (rewrite |(.PC+ +1(16)X15:0>] chop) *)
% (prove rladdr2.sd (rewrite |(.PC + +1(16)X15:0>| chop) *)
j:-f (prove rltimesS.sd (rewrite |(.PC+ + 1(16))X15:0>{ chop) *)
:_’.; (prove jump.sd (rewrite |(PC + +1(16))X15:0>| chop) *)

(prove storepc.sd (rewrite [(.PC + + 1(16))<15:0>{ chop) *)))

_ The proof command "*"" means symbolically execute the I1SPS program until the goal is reached or execution
-_:‘: has halted, and apply some axioms automatically. The “"chop” axiom is not applied automatically and must
'~' be invoked by the user. The chop axiom is used to simplifv bitstring expressions. In this example the
. application of the chop axiom allows SDVS to simplify the expression (PC ++ 1 (16)) <15: to
(.PC + + 1(16)) because SDVS determines that adding the constant bitstring with value 1 and length 16 to
\ the bitstring PC of length 16 will not overflow PC. The proof commands can be submitted interactively or
o processed as a baich job.
-Ir_I;: The same hand-generated state deltas can be proved consistent with the ISPS description of the host
.:-f? machine. Because the host machine uses names that are different from the abstract specification, a mapping
:J must be specified.
A
h
o
%
LY.

33

A T SRS Y
- W Y e e 0 % Lt
e e e T L A

SECTION I
FUTURE CONCERNS

i wo concerns are mentdoned for future consideration. The first concern is the feasibility of SDVS for

real computers. Currently. it takes 1-2 hours to execute the LOAD Rl instruction on the host machine. The

host machine is only 3 1/2 pages of ISPS code. A rcal machine can be more than 30 pages of ISPS code.

El ok i b ')

As in most verification systems. the majority of the time is spent in the theorem prover. In order to

: reduce the verification tme. it appears that significant experimentation is necessany (1) to find a proper ;

halance between automated deduction and user supplied proofs. (2) to construct a good set of axioms for the

four theories, and (3) to develop heuristics (or tactics) for automated deduction. Also. this IS a prototype

systern. It is anticipated that one or more orders of magnitude improvemcent can be made with appropriate

scftware engineering.

The second concern is whether the target machine should be specified in ISPS. If target instructions

can be easily specified with state deltas it may be desirable to eliminate the ISPS description of the target

machinc because

1) the ease of labeling ISPS descriptions and mapping labels depends on the style of the ISPS
programmer. and

2) it is more feasible to symbolically execute and simplify one 1SPS description than two ISPS
descriptions

We are currently working on a way to abstract the computer language semantics from the ISPS description of

2 & 4 e 7

the target machine in an efficient manner. SDVS will now be applied to larger examples. "real” computers.

With this experimental data. performance issues will be addressed.

- . ¥, W . i e - B el R W - SE ek - Ak -
....... AU e A S PR A IR R T e Y R Rl ha® By P R At

4 REFERENCES

. [1] Mario R. Barbacci, Gary E. Barnes. Roderic G. Cattell. and Daniel P. Siewiorek.
The ISPS Cumputer Description Language.
CMU-CS-79-137, Carnegie-Mellon Universitv. Computer Science Department, August, 1979.

[2] Stephen D. Crocker.
7 State Deltas: A Formalism for Representing Segments of Compuiation.
y PhD thesis. University of California, Los Angeles, 1977.

.- [3} C.A.R.Hoare.
! An Axiomatic Basis for Computer Programming.
¢ Communications of the ACM 12(10):576-580. 583, October, 1969.

[4] Leo Marcus.
Dynamic and Static Reasoning in Program Verification.
Technical Report ATR-82(8478)-2, The Aerospace Corporation, June, 1982.

. {S] L.Marcusandl.V.Cook.
- SDVS User Manual.
‘ Technical Report ATR-84(8478)-1, The Aerospace Corporation. 1984.

SAfurarate

(AT OE RN N)

)

)
)
\
»

-- “ et At et T A et
, ~.. » "™ *‘..\“I.-.‘
L YA AR SR LRGN

.“:.‘.‘-‘.“\‘r.(‘Y:f.l v-a‘v\ N re e .

APPENDIX A
ISPS DESCRIPTION OF TARGET MACHINE

IARGETY) =
BEGIN
** GLOBAL.VARIABLES **
TIRC15:00,
TMEM[0:127)K15:0>.
R1<15:00,
. R2<15:00,
PCL15:00
** MAPPINGS **
INST.OPC3:00> : = TIR<15:12>
** MAIN.ROUTINE **
ENTRY(Q {MAIN} :=
BEGIN
REPEAT
TLOOP: = BEGIN
INST.FETCH(Q NEXT
INST.DECODE.EXEC()
END
END
** FETCH.INSTRUCTION.FROM.MEMORY **
INST.FETCH() : =
BEGIN
TIR = TMEM[PC] NEXT
PC = PC+1
END
** DECODE.OPERATION.AND.EXECUTE **
INST.DECODE.EXEC() : =
BEGIN
DECODE INST.OP =>
BEGIN
'1000 : = LOAD.R1 :=
(INST.FETCH() NEXT R1 = TMEM[TIR])),
‘1001 := LOAD.R2 :=
(INST.FETCH() NEXT R2 = TMEM[TIR]).
1010 : = STORE.R]l :=
(INST.FETCH() NEXT TMEMJ[TIR] = R1).
1011 := STORE.R2 : =
(INST.FETCH() NEXT TMEM[TIR] = R2).
. ‘1100 : = R1.LADD.R2 : = (R1 = R1+R2).
1101 : = RLTIMES.S : = (R1 = R1*3).
1110 := JUMP : =
(INST.FETCH() NEXT PC = TMEM(TIR]).
‘1111 : = STORE.PC : =
(INST.FETCH() NEXT TMEMITIR] = PC)
END
END

19

APPENDIX B
ISPS DESCRIPTICN OF HOST MACHINE

MACHINE((=
BEGIN
** REGISTERS**
HIR(NSTRUCTION<15:0>. IRLOADOK1S: 0> =
(IF IRLOAD => (HIR = INSTRUCTION)).
MAR(MARDATA<15:0> MARLOADOX15:05 1=
(JF MARLOAD => (MAR = MARDATA)).
MIRG2:0

** INSTRUCTION.FORMAT **
INST.OPC7:0> : = HIR<15:8>

** MICRO.INSTRUCTION.FORMAT **
LALU<S:0> : = MIR<32:24>.

OEYFO ;= MIRQP.

C.INO 1= MIRQ2D.
SEQ.MUX.SLCT<1:0> : = MIR<21:20>.
LD.IR< 1= MIRLI9.

LD.MARO ;= MIRC®.

OE.DBC 1= MIRLID.

R.WFCO 1= MIRCI6.

A.ADRC3:0> : = MIRK15:12>.
B.ADR<3:0> := MIR<11:8,
NEXT.ADRK7:0> : = MIR<7:0>

** MEMORIES **
UM(0:255] <32:00.
HMEM]0:127] <15:0>

** MULTIPLEXERS **
SEQ.MUX(X<8:0>.Y<8:0> SELECT<1:0>K8:0> : =
BEGIN
DECODE SELECTK0> =>
BEGIN
0= SEQ.MUX = \.
1= SEQ.MUX =1
END
END

= OLTPL I.OF.AMD290L.SINMPLIFIED =7

CONDITION BITS<3:0>

*= Al U THIS.IS.ASIMPLIFIED.AM2901 **

AMD2901 SIMPLIFIED(A.ADR.2901<3:0>.B.ADR.2901<3:00.
ALU.D.BUSCIS:0>, 1K8:0>. C.IN.2901<1:0>)K15:0> =
BEGIN
=ALL.OUTPUT**

4]

. . Nt e e e P T S S SN U JUEEE S S S SN I EC S S
G o R LA P S S TR ',-'-'-" RIS D P P N P ‘."'.\.'-..': L1
A Ve " . . . LT oY R S e L P N N o

VST YA S DEAE YRV DUV S S

FEQLOO: = CONDITION.BITSCD.
IOVRO: = CONDITION.BITS<2.
SIGNO:= CONDITION.BITSC,
C.OUT<: = CONDITION.BITSKO>

ALU.INPUT
SRC.2901<2:00: = IK8:6>,
OP.2901<2:>: = K5:3.
DEST.2901<2:0>: = K2:0>

*x AL U.LOCAL.VARIABLES**

ALUKL6:00.
R<15:00. 'RINPUTTOALU
S<15:0> IS INPUTTO ALU

*x AL U.MEMORIES**
RAM.2901{0:15K15:0>

*MAPPING**
F.2901<15:0>: = ALUK1S:0>

INSTRUCTION.CYCLE
P2901() {MAIN}:= 12901 PROCEDURE
BEGIN
SOURCE() NEXT
EXEC() NEXT
DESTINATION()
END

** ACCESS.COMPUTATION**
SOURCE() : = 1 SOURCE CALCULATION

BEGIN

DECODE SRC.290]1 =>
BEGIN
#0:=AQ:= (R = RAM.290I{A.ADR.2901}).
#1 =AB:= (R = RAM.2901[A.ADR.2901] NEXTS = RAM.2901[B.ADR.2901}).
#2:=7Q:= (R =0NEXTS=0)
#3:=7B:= (R =0 NEXTS = RAM.2901{B.ADR.2901])).
#4:=7A:= (R =0 NEXTS = RAM.2901[A.ADR.2901}).
#5:=DA:= (R = ALUDBUS NEXTS = RAM.2901[A.ADR.2901)).
#6:=DQ:= (R = ALU.D.BUSNEXTS$=0).
#7:=D7:= (R = ALUD.BUS NEXTS=0)
END .

END.

DESTINATION() : = ' DESTINATION CALCULATION
BEGIN
DECODE DEST.2901 =>
BEGIN

#0:=DFSTOFY.FQ:= (AMD2901.SIMPLIFIED = F.2901).

42
’l
G A RIS .
R R A L O IR T e e e PP R IR) Pt e e e L UL S
P . DN T T e AR RGO AR A PRI AT I DRI AU T e e e T T Ly LN
'._'fh";’ et a s alatalasalslntatslatal ol L(‘j.;(‘;-ixlkl‘ ek o ot Balatad athnton s A T ST Sl et '.c\.j

BNl J v n L Y >
-~ AN) P % DA Ul S e 40 b e O N A S p ey L e A D A A M A AN A A S (o b S e i St 430 ye

iS4 A% ferhie Ah Sae Sunal

-
"

SRR R RY

y]
.

. PO AL

N

.
s AR S AN e

N
~

#1:=DESTLFY: = (AMD2901.SIMPLIFIED = F.2901).

4

2:=DEST2AY FB:= (AMD2S0LSIMPLIFIED = RAM.290i[A.ADR.2901] NEXT

RAM.2901[B.ADR.2901] = F.2901).
#3:=DEST3.FY FB: = (AMD2901.SIMPLIFIED = F.2901 NEXT
RAM.2901(B.ADR.2901] = F.2901).
#4:=DEST4.FY.SRBQ: = (AMD2901.SIMPLIFIED = F.2901).
#5:=DESTS.FY SRB: = (AMD2901.SIMPLIFIED = F.2901),
#6:=DEST6.FY.SLBQ: = (AMD2901.SIMPLIFIED = F.2901).
#7:=DEST7.FY SLB:= (AMD2901.SIMPLIFIED = F.2901)
END
END

INSTRUCTION.EXECLTION
EXEC() :=

BEGIN

DECODE OP.2901 =>
BEGIN
#0:= RADDS:= (ALU =R + S+ C.IN.2901).
#1:=SSUBR:=(ALU =S-R + C.IN.2901).
#2:=RSUBS:=(ALU =R-S+ C.IN.2901).
#3:=RORS:= (ALU = RORS).
#4:= RANDS:= (ALLU =R ANDS).
#5:= RMASK.S:= (ALU = NOTRANDS).
#6:= REXORS:= (ALU = RXORS).
#7:= REXNORS:= (ALU = REQVS)
END NEXT

FEQLO = F.2901 EQL "0000 NEXT

SIGN = F.2901<15> NEXT

C.OUT = ALUI

END

END ' END OF AM2901 DESCRIPTION

** MEMORY.IO **
MEM.IO(ADR<15:0> MEMDATA<15:0>. DATA.ENABLEC 10.R. WEGK15:05
.= BEGIN
DECODE DATA.ENABLE@IO.R WF =>
BEGIN
00 := NO.OPY).
™NO DATA ON BUS, BUT WRITE
I => ERROR.BUT USE THIS AS NOP
10 := (HMEM[ADR] = MEMDATA NEXT
MEM.IO = MEMDATA).
IDATA AND WRITE
01:= MEM.IO = HMEM[ADR),
INO DATA. BUT READ
‘11:= STOP()
'DATA. BUT READ => ERROR

43

- - T
&l -

,

Cd ¢ Tl Sy

Y

END
END

** MJACHINE.DESCRIPTION **
ENTRY() {MAINY - =
BEGIN
MIR = UMJ0] NEXT
REPEAT
BEGIN
AMD2901.SIMPLIFIED(A.ADR B.ADR.MEM.IO.LALU. 0 C.IN) NEXT
MEM.IO(MAR.AMD2901 SIMPLIFIED.OE.DB.R. WF) NEXT .
SEQMUN(NENT.ADR.INST.OP SEQMUN.SLCT) NEX'T
MAR(AMD2901.SIMPLIFIED.LID.MAR) NEX1
HIR(MEM.IO.LD.IR) NEXT
HI O0P: = MIR = UM[SEQ.MUX]
END
END
END

44

APPENDIX C
MICROCODE

Viicrocode in Hexidecimal Comments

L M{0]="10004F001
UM[1}="0C3490F02

U \{[2] = 000100000

UM =

100041061

UM"811="0C3410F82

UM{"s2)="

1D8040083

U'M|"83]="000010084

UM["84]="

UM["90)="

1DB000100

10004F091

UM["91]="0C3410F92

UM[92)="

1D8040093

UM["93]="000010094

UM["94)="

UM["AQ] ="

UM["Al)="

UM["'A2)="
UM["A)="

1DB000200

'10004F0A1
0C3410FA2

1D80400A3
119021000

UM["B0]="10004FOB1

UM["Bi]="

UM["B2)="
UM["B3)="

LN[Coj="

UM["Do) ="
UMD =
UMD} =
UM D3 ="
UM[" D)=

MR ="
UM["Elj="

LM[E2) ="

0C3410FB2

1D80400B3
119022000

043002100

"T1B0013DI
‘04300312
043003103
04300314
"N43003100

10004F0F 1
0C3410HT2

1D8OIOOE3

** [NST.FETCH **

MAR <- RAM.2901[15]
RAM.2901{15] <- RAM.2901[15]+1:
HIR <¢-HMEM[MAR]

** DECODE **

SEQ.MUX <- INST.OP

= OAD.R] **

MAR < RAM.2901[15)
RAM.2901{15] <- RAM.2901[15]+1:
MEM.I0 <- HMEM[MAR]

MAR <- MEM.IO

MEM.IO <- HMEM|MAR]
RAM.2901{1} <- MEM.IO

*+ OAD.R2 **

MAR <- RAM.2901{15]
RAM.2901{15] <- RAM.2901{15]+ 1:
MEM.IO <- HMEM[MAR]

MAR ¢ MEM.IO

MEM.IO <- HMEM[MAR]

RAM 2901]2] <- MEM.IO

** STORE.R] **

MAR ¢ RAM.2901{15)
RAM.2901[15] <- RAM.2901{15]+ 1:
MEM.IO <- HMEM[MAR]

MAR <- MEM.IO

HMEM[MAR] <- RAM.2901[1]

** STORE.R2 **

MAR < RAM.2901{15]
RAM.2901{15] <- RAM.2901(15]+ 1
MEM.IO <- HMEM[MAR]

MAR ¢ MEM.IO

HMEM[MAR] ¢- RAM.2901[2)

** RLADD.R2 **

RAM.2901[1] <- RAM.2901[1]+ RAM.2901[2]

** R1TIMES.S **
RAM.2901(3] <- RAM.2901[1}

RAM.2901[1] <- RAM.2901{1]+ RAM.2901{3)
RAM.2901[1] <- RAM.2901{1]+ RAM.2901(3]
RAM.2901[1] <- RAM.2901{1]+ RAM.2901{3]
RAM.2901]1} <- RAM.2901[1]}+ RAM.2901{3]

** JUMP *=

MAR <- RAM.2901[15]
RAM.2901{15} <- RAM.2901[15]+1:
MEM.10 <- HMEM[MAR]

MAR - MEMLIO

UM|["E3]="0000100E4 MEM.IO <- HMEM[MAR]
UM["E4]="1DB000F00 RAM.2901[15] <- MEM.IO

** STORE.PC **
UM["F0}="10004F0F1 MAR <- RAM.2901(15]
UM["F1]="0C3410FF2 RAM.2901{15])<- RAM.2901[15}+1;

MEM.IO <- HMEM[MAR]
UM["F2}="1D80400F 3 MAR <- MEM.IO
UM["F3)="10142F000 HMEM[MAR] <- RAM.2901[15]+1

PYRWIY

-

Pl b %

R RPN

P

P

NN
oo, .

1Y

r
74

S
o
“:'.:
Y
.

I
'-"u‘n'

‘I' l. l'l

IR

ARSI

-

s

RN S TY] -

e N e e TR LY LT e T T TR N (T e
\- (...- (' & J\f T _\.'\. L .r\:

.........

........... T TN T W (W w T vy

APPENDIX D
ABSTRACT SPECIFICATION OF TARGET MACHINE

loadr1.sd:

[SD pre: (TMEM[|PC|]=LOAD.R1<0OP |PC|1t127 .TARGET\upc=TLOOP
LLOAD.R1-0OP=32768(16) | TMEMI|(.PC+ +1(16))<15:0{}} le 127)
(PCOVERING TMEM[0:127] TMEM[.PC])

env: (TARGET\ROM)

mod: (R1 PC TARGET\upc TIR TARGET\OTHERSTUFF)

post: (#R1=TMEM[|. TMEMI[|(.PC+ + 1(16))X15:0>]]l] #PC=(PC+ 42(16))X15:0>)
#TARGET\upc=TLOOP]

loadr2.sd:

[SD pre: (TMEM[|PC[]J=LOAD.R2<OP |PC|1t127 .TARGET\upc=TLOOP
LOAD.R2+~OP=36864(16) | TMEM]|(.PC+ +1(16))X15:05])| le 127)
(PCOVERING TMEM][0:127] TMEM[.PC})

env: (TARGET\ROM)

mod: (R2 PC TARGET\upc TIR TARGET\OTHERSTUFF)

post: (#R2= TMEM[|. TMEM[}(.PC + + 1(16)K15:05[]]] #PC=(.PC+ +2(16))K15:05)
#TARGET\upc = TLOOP)

storer1.sd:

5D pre: (TMEM[|.PC|]=STORE.R1«OP |PC|1t127 .TARGET\upc=TLOOP

STORE.R1<0P=40960(16) |.TMEM[|(.PC+ +1(16)X15:0>|]| le 127)
(PCOVERING TMEM]J0:127} TMEML.PC))

env: (TARGET\ROM)

mod: (PC TARGET\upc TIR TMEM[|. TMEM[|(.PC+ + 1(16))<15:0>{]l}
TARGET\OTHERSTUFF)

post: (# TMEM[|. TMEM[|(.PC + +1(16))X15:0>]]l]=.R1 #PC=(.PC+ +2(16))<15:0>)
#TARGET\upc=TLOOP]

storer2.sd:

[SD pre: (TMEM[|.PC|J=STORE.R2«OP |PC|1t127 .TARGET\upc=TLOOP
STORE.R2+-0P=45056(16) |.TMEM[|(.PC+ +1(16))<15:0>{}j 1e 127)
(PCOVERING TMEM[0:127) TMEM[.PC))

env: (TARGET\ROM)

mod: (PC TARGET\upc TIR TMEM[.TMEMI}(.PC + + 1{16))<15:0>|)l]
TARGETNOTHERSTUFF)

post: (# TMEM[| TMEM[|(.PC + + 1(16)X15:0>(]|]= .R2 #PC=(PC+ +2(16))<15:0>)
TARGET\upc =TLOOP)

47
...... R, i [
P BT T e e T LN L te N e aTe N | N N T N N T S A IR S L Ceomy e e, me -
RGO AC AE I DAY LI AN AN S N NV N UL SN N RIS U T I R P A T
AP A AT A AT A T S S T T U G L I T AR A N

rtaddr2.sd:

[SD pre: (TMEM([|.PC|]=R1.ADD.R2+«0P |PC]1t127 .TARGET\upc=TLOOP
RL.ADD.R2+«0OP=49152(16))
(PCOVERING TMEM[0:127] TMEM|[.PC})
env: (TARGET\ROM)
mod: (PC TARGET\upc TIR R1 TARGET\OTHERSTUFF)
post: (#R1=(R1++.R2K15:0> #PC=(PC+ +1(16))<15:0)
#TARGET\upc=TLOOP]

ritimes5.sd:

[SD pre: (TMEM{[|.PC|]=R1.TIMES.5«0P |PC|1t127 .TARGET\upc=TLOOP
R1TIMES.5<0P=153248(16))
(PCOVERING TMEM]0:127] TMEM[.PC))
env: (TARGET\ROM)
mod: (PC TARGET\upc TIR R1 TARGET\OTHERSTUFF)
post: (#R1=(R1**5(4))K15:0> #PC=(.PC+ +1(16))<15:0)
#TARGET\upc=TLOOP]

jump.sd:

[SD pre: (TMEM[|.PC[]=JUMP«OP |PC|1t127 .TARGET\upc=TLOOP
JUMP+~OP=57344(16) | TMEM[|(.PC+ +1(16))X15:0>])} le 127)
(PCOVERING TMEM][0:127] TMEMI.PC])

env: (TARGET\ROM)

mod: (PC TARGET\upc TIR TARGET\OTHERSTUFF)

post: (#PC=.TMEM[|. TMEM[}(.PC+ + 1(16)X15:0>{}|])
#TARGET\upc=TLOGP]

storepc.sd:

[SD pre: (TMEM(|.PC|]=STORE.PC«OP |PC|1t127 .TARGET\upc=TLOOP
STORE.PC+OP=61440(16) | TMEM[|(.PC+ +1(16))X15:0>]]| 1e 127)
(PCOVERING TMEM[0:127] TMEM[.PC))

env: (TARGET\ROM)

mod: (PC TARGET\upc TIR TMEM[|. TMEM|{.PC + + 1(16))<15:0>{JI]
TARGET\OTHERSTUFF)

post: (# TMEM[.TMEM[|(.PC + + 1(16))X15:00]}I] = ((PC + + 2(16))<15:0>
#PC=(PC+ +2(16))X15:0>) # TARGET\upc=TLOOP]

U PSS 02 Wb AN A SIS 87 Bt W Bty bt Sies A T AL USRS A X PO N LR P AT

N D

, -
P oo
") - -
) ﬂ:l

oy
A
o
%

N

-. +
\ ‘-';'
b
‘ *f' .

SERA

2
L)

2

s

-y >
PR]

) .;2

VN
oL

h o ,

!

e

‘_. P 4
. ‘:"‘ﬁ' L)

¢,

